OCR Maths S1

Topic Questions from Papers

Probability

Answers

1 (i)	$\begin{aligned} & \mathrm{B}(5,3 / 8) \\ & { }^{5} C_{2}(3 / 8)^{2}(5 / 8)^{3} \\ & =562 / 16384 \text { or } 0.343 \end{aligned}$	M1 M1 3 A1	$\mathrm{B}(5,3 / 8)$ stated or $3 / 8,5 / 8$ seen and sum of powers $=5$ Correct expression Answer, a.r.t. 0.343 ISW
(ii)	$\begin{aligned} & 1 / 2 p_{1}=3 / 8 \\ & p_{1}=3 / 4 \mathbf{A G} \end{aligned}$	$\begin{array}{ll} \mathrm{M} 1 & \\ \text { A1 } & 2 \end{array}$	or $3 / 8 / 1 / 2$ or $3 / 8 \times 2$ $3 / 4$ correctly obtained. Must see explicit step. Verification eg $1 / 2 \mathrm{x}^{3} / 4=3 / 8$ or $3 / 8 / 3 / 4=1 / 2$: M1A1
(iii)	$\begin{aligned} & 1 / 2 p_{2}=1 / 3 \\ & p_{2}=2 / 3 \end{aligned}$	$\begin{array}{ll} \mathrm{M} 1 \\ \text { A1 } & 2 \end{array}$	or $1 / 3 / 1 / 2$ or $1 / 3 \times 2$ Answer 2/3 or a.r.t. 0.667

(Q6, Jan 2005)

2 (i)	${ }^{4} / 7$ or $0.571(3 \mathrm{sfs})$	B1 1	
(ii)	$\begin{aligned} & 5 / 8 \times 4 / 7+3 / 8 \times 5 / 8 \\ & =265 / 448 \text { or } 0.592(3 \mathrm{sfs}) \end{aligned}$	M1M1 A1 3	M1: one correct prod or add any two prods M1: all correct
(iii)	$\begin{aligned} & 3 / 8 \times 5 / 8+5 / 8 \times 3 / 7 \\ & =225 / 448 \text { or } 0.502(3 \mathrm{sfs}) \end{aligned}$	M1M1 A1 3	M1: one correct prod or add any two prods M1: all correct
Total		7	

(Q2, June 2006)

3 (i)	$2 / 9$ or $7 / 9$ oe seen $3 / 9$ or $6 / 9$ oe seen $1 / 8$ or $7 / 8$ oe seen Correct structure All correct	B1 B1 B1 B1 B1 5	ie 8 correct branches only, ignore probs \& values including probs and values, but headings not req' d
ii	$\begin{aligned} & 3 / 10 \times 7 / 9+7 / 10 \times 3 / 9+7 / 10 \times 6 / 9 \\ & 14 / 15 \text { or } 0.933 \text { oe } \end{aligned}$	$\begin{array}{ll} \text { M2 } \\ \text { A1 } & 3 \end{array}$	or $3 / 10 x^{7} / 9+7 / 10$ or $1-3 / 10 \mathrm{x}^{2} / 9$ M1: one correct prod or any prod $+7 / 10$ or $3 / 10 x^{2} / 9$
iii	$\begin{aligned} & 3 / 10 \times 2 / 9 \times 7 / 8+7 / 10 \times 6 / 9 \\ & 21 / 40 \text { or } 0.525 \text { oe } \end{aligned}$	$\begin{aligned} & \text { M2 } \\ & \text { A1 } \end{aligned}$	M1: one correct prod cao
	No ft from diag except: with replacement: (i) structure: B1 ${ }^{\text {a }}$ (ii) 1100 : $\mathrm{B} 2 \quad$ (iii) $0.553: \mathrm{B} 2$		
Total		11	

4 (ia)	$1 / 3$ oe	B1 1	B \leftrightarrow W MR: $\max ($ a)BO(b)M1M1(c)B1M1
b	$\begin{aligned} & \mathrm{P}(\mathrm{BB})+\mathrm{P}(\mathrm{WB}) \text { attempted } \\ & =4 / 10 \times 3 / 9+6 / 10 \times 4 / 9 \quad \text { or } 2 / 15+4 / 15 \\ & =2 / 5 \mathrm{oe} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & 3 \end{aligned}$	$\begin{aligned} & \text { Or } / 10 \times 3 / 9 \mathrm{OR} / 10 \times 4 / 9 \text { correct } \\ & \mathrm{NB}^{4} / 10 \times 4 / 10+6 / 10 \times 4 / 10=2 / 5: \text { M1M0A0 } \end{aligned}$
c	Denoms $9 \& 8$ seen or implied $3 / 9 \times 2 / 8+6 / 9 \times 3 / 8$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \end{aligned}$	Or ${ }^{2} / 15$ as numerator
	$=1 / 3$ oe	$\mathrm{A} 1$	May not see wking
ii	P (Blue) not constant or discs not indep, so no	B1 1	Prob changes as discs removed Limit to no. of discs. Fixed no. of discs Discs will run out Context essential: "disc" or "blue" NOT fixed no. of trials NOT because without repl Ignore extra
Total		8	

(Q4, June 2007)

5 (i)	$\begin{aligned} & \text { V0.04 }(=0.2) \\ & (1-\text { their } \sqrt{ } 0.04)^{2} \\ & =0.64 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } 3 \end{aligned}$	
ii	$1-p$ seen M1 for either $2 p(1-p)=0.42$ or $p(1-p)=0.21$ oe $2 p^{2}-2 p+0.42(=0)$ or $p^{2}-p+0.21(=0)$ $\frac{2 \pm}{} \frac{\Delta\left((-2)^{2}-4 \times 0.42\right)}{2 \times 2}$ or $\frac{1 \pm}{} \frac{/\left((-1)^{2}-4 \times 0.21\right)}{2 \times 1}$ or $(p-0.7)(p-0.3)=0$ or $(10 p-7)(10 p-3)=0$ $p=0.7$ or 0.3	B1 M1 M1 M1 A1 5	$2 p q=0.42$ or $p q=0.21$ Allow $p q=0.42$ or opp signs, correct terms any order $(=0)$ oe Correct Dep B1M1M1 Any corr subst'n or fact'n Omit 2 in $2^{\text {nd }}$ line: max B1M1M0M0A0 One corr ans with no or inadeq wking: SC1 eg $0.6 \times 0.7=0.42 \Rightarrow p=0.7$ or 0.6
Total		8	

6 (i)	$\begin{aligned} & 0.4 \times p=0.12 \quad \text { or }{ }^{0.12} / 0.4 \mathrm{or}^{12} / 40 \text { oe } \\ & p=0.3 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
11	$0.4 \times(1-$ their 0.3$)$ oe eg $40 / 100 \times 28 / 40$ 0.28 or 28% oe	M1 A1ft 2	or $0.4-0.12$ or 0.28 or 28 seen Not 0.4×0.88 unless ans to (i) is 0.12
Total		4	

(Q4, Jan 2008)

7 (i)	$\begin{aligned} & 1 / 6+3 \times(1 / 6)^{2} \\ & =1 / 4 \ldots \end{aligned}$	M2 A1 3	$\begin{array}{r} \text { or } 3 \times(1 / 6)^{2} \text { or } 1 / 6+(1 / 6)^{2} \text { or }{ }^{1 / 6}+2(1 / 6)^{2} \\ \text { or } 1 / 6+4(1 / 6)^{2} \quad \text { M1 } \end{array}$
(ii)	$1 / 3$	B1 1	
(iii)	3 routes clearly implied out of 18 possible (equiprobable) routes	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$	$\begin{aligned} & \text { or } 1 / 3 \times 1 / 6 \times 3 \times 1 \\ & \text { or } 1 / 3 \times 1 / 6 \text { or } 1 / 6 \times 1 / 6 \times 3 \text { or } 1 / 3 \times 1 / 3 \times 3 \text { or } 1 / 4-1 / 6 \text { M1 } \\ & \text { but } 1 / 6 \times 1 / 6 \times 2 \end{aligned}$
			$\begin{array}{ll}\frac{\left(\frac{1}{6}\right)^{2} \times 3}{\frac{1}{2}} \text { or } \frac{\frac{1}{4}-\frac{1}{6}}{\frac{1}{2}} \text { or } \frac{\frac{1}{2} \times \frac{1}{6}}{\frac{1}{2}} \text { oe } & \text { M2 } \\ \text { or } \frac{\mathrm{P}(4 \& t \text { twice })}{\mathrm{P} \text { (twice })} \text { stated or } \frac{\text { prob }}{\frac{1}{2}} & \text { M1 }\end{array}$
			Whatever $1^{\text {sit }}$, only one possibility on $2^{\text {nd }}$ M2
			$1 / 6$, no wking M1M1A1 $1 / 12$, no wking M0
		A1 3	
Total		7	

8 (ia)	$18 / 19$ or ${ }^{1} / 19$ seen ${ }^{17} /{ }_{18}$ or ${ }^{1 /}{ }_{18}$ seen structure correct ie 6 branches all correct incl. probs and W \& R	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \\ & \text { B1 } 4 \end{aligned}$	regardless of probs \& labels (or 14 branches with correct $0 \mathrm{~s} \& 1 \mathrm{~s}$)
b	$\begin{aligned} & \mathrm{T} / 20+{ }_{19} / 20 \times 1 / 19+{ }^{19} / 20 \times{ }^{18} / 19 \times 1 / 18 \\ & =3 / 20 \end{aligned}$	M2 A1 3	M1 any 2 correctterms added \quadT9 $/ 20 \times 18 / 19 \times 17 / 18$ $1-{ }^{19} / 20 \times{ }_{19} \times{ }^{18} / 18$
iia	$\begin{aligned} & 19 / 20 \times 18 / 19 \\ & =9 /_{10} \mathrm{oe} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } 2 \end{aligned}$	
b	$\begin{aligned} & (\mathrm{P}(X=1)=1 / 20) \\ & 19 / 20 \times 1 / 19 \\ & =1 / 20 \\ & \sum_{10}^{1} \\ & ={ }^{57} / 20 \text { or } 2.85 \end{aligned}$	M1 A1 M1 A1 4	or $1-(1 / 20+9 / 10)$ or 2 probs of $1 / 20$ M1A1 ≥ 2 terms, ft their p 's if $\Sigma p=1$ NB: ${ }^{19} / 20 \times 3=2.85$ no mks
			With replacement:
ia			Original scheme.
ib			$1 I_{20}+{ }_{19} / 20 \times T / 20+(19 / 20)^{2} \times 1 / 20$ $\text { or } 1-(19 / 20)^{2}$ M1
iia			
b			Original scheme But NB ans 2.85(25...) M1A0M1A0
Total		13	

(Q8, June 2009)

9 (i)	$25 / 37$	B2 2	B1 num, B1 denom 25/37xp B1
(ii)	$\frac{15}{23}$ seen or implied	M1	
	$\times \frac{39}{59}$ seen or implied	M2	M1 num, M1 denom
	$=\frac{585}{1357} \text { or } 0.431(3 \mathrm{sfs}) \text { oe }$		Allow M1 for 39/59x or + wrong p
Total		[6]	

(Q7, Jan 2010)

10 (i)	$\begin{aligned} & 0.4 \times 0.7 \\ & 0.6+0.4 \times 0.7 \\ & \\ & =0.88 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	or $0.6+$ prod of 2 probs Condone $0.6 \times 0.7+0.6 \times 0.3+0.4 \times 0.7$ or $0.6 \times 0.6+0.6 \times 0.4+0.4 \times 0.7$	$1-\operatorname{prod}$ of 2 P's or 0.4×0.3 $1-0.4 \times 0.3$
ii	$\begin{aligned} & p+(1-p) \times p=0.51 \text { or } 2 p-p^{2}=0.51 \\ & p^{2}-2 p+0.51=0 \\ & (p-0.3)(p-1.7)=0 \text { or } p=\frac{2 \pm \sqrt{4-4 \times 0.51}}{2} \text { oe } \\ & p=0.3 \end{aligned}$	M1 A1 M1 A1	or $p^{2}+p \times(1-p)+(1-p) \times p$ Correct $\mathrm{QE}=0$ Condone omission of " $=0$ " Correct method for their 3-term QE Not $p=0.3$ or 1.7	Condone $p+p \times 1-p$ M1, but $p+q p=0.51 \mathrm{M} 0$ or $(1-p)^{2}=0.49$ M1A1 $1-p= \pm 0.7 \quad$ M1 must have \pm Correct ans from correct but reduced wking or T \& I or verification or no wking: 4 mks Ans $p=0.3$ or 1.7 from correct but reduced wking or $\mathrm{T} \& \mathrm{I}$ or no wking: M1M1M1A0 Ans $p=0.3$ following correct wking except other solution incorrect: BOD 4 mks $\left.\left(\text { eg } p=\frac{2 \pm \sqrt{4-4 \times 0.51}}{2} \text { so } p=0.3 \text { or }-1.3 \text { so } p=0.3: \quad 4 \mathrm{mks}\right)\right)$ $p=0.3$ from wrong wking but correct verification: BOD 4 mks $p=0.3$ from wrong wking alone: M0A0M0A0
Total		7		

(Q4, Jan 2011)

11 (i)

Allow B2 with missing labels but only if probs matching labels, if any B2 2 consistently placed, ie R above B throughout

12 (i)	Incorrect p (eg "cubical die means 18 sides hence $p=\frac{1}{18}$ "): can gain all $\mathrm{B} \& \mathrm{M}$ marks.			
	25/216 oe or 0.116 (3 sfs)	B1 1		
ii	$\begin{aligned} & (6)^{7} \times 1 / 6 \mathrm{alone} \\ & =0.0465(3 \mathrm{sfs}) \text { or } \frac{78125}{1679616} \end{aligned}$	$\begin{aligned} & \mathrm{M} 2 \\ & \mathrm{~A} 13 \end{aligned}$	M1 for $(5 / 6)^{8} \times 1 / 6$ alone	
iii	$\begin{aligned} & \left(\frac{5}{6}\right)^{8} \text { oe alone } \\ & =0.233(3 \mathrm{sfs}) \text { or } \frac{390625}{1679616} \end{aligned}$	$\begin{array}{ll} \mathrm{M} 1 & \\ \text { A1 } & 2 \end{array}$	$1-\mathrm{P}(X \leq 8)$, with exactly 8 correct terms	NOT $1-\left(\frac{5}{6}\right)^{8}, \quad \operatorname{NOT}\left(\frac{5}{6}\right)^{8} \times \ldots$
iv	NB If more than 5 products are added (eg $\begin{aligned} & (5 / 6)^{9} \times 1 / 6+(5 / 6)^{10} \times 1 / 6+(5 / 6)^{11} \times 1 / 6+(5 / 6)^{12} \times 1 / 6 \\ & (=0.0323+0.0268+0.0224+0.0187) \end{aligned}$ $=0.100(3 \mathrm{sfs})$	$\leq X \leq 12$ M3 $\text { A1 } 4$	no marks M3 for all correct or M2 for 3 of these added or these 4 plus 1 extra or 0.0817 or 0.0680 or 0.139 or 0.116 or M1 for ≥ 1 of these terms or values seen; ignore incorrect Allow 0.1 with wking	$\left\lvert\, \begin{array}{lll} (5 / 6)^{9}-(5 / 6)^{13} & \text { or } 1-(5 / 6)^{13}-\left[1-(5 / 6)^{9}\right] & \text { M3 } \\ \text { or }(5 / 6) 8,9 \text { or } 10-(5 / 6) 12,13 \text { or } 14 & \\ \text { or } 1-(5 / 6)^{12,13} \text { or } 14-\left[\left(1-(5 / 6)^{8,9} \text { or } 10\right]\right. & \text { M2 } \\ \text { or } \pm\left[(5 / 6)^{9}-\left(1-(5 / 6)^{13}\right)\right] \text { or } \pm\left[1-(5 / 6)^{9}-(5 / 6)^{13}\right] & \text { M1 } \end{array}\right.$
Total		10		

13	(i)	Top: 2 branches $\frac{4}{5}, \frac{1}{5} \& R, B$ shown Bottom: $1^{\text {st }}$ branch: prob $=1$ or $\frac{5}{5}$, \& R shown no $2^{\text {nd }}$ branch OR branch with prob $=0$ or $\frac{0}{5}$	B1 B1 [2]	consistent allow eg $\frac{4}{4}$ ignore any $3^{\text {rd }}$ layer branches	Any missing label(s) on first three branches, subtr B1 once No label needed on zero branch, if drawn.
	(ii)	$\begin{aligned} & \frac{5}{6} \times \frac{1}{5} \text { or } \frac{1}{6}(\times 1) \text { or } \frac{1}{6} \text { seen } \\ & \frac{5}{6} \times \frac{1}{5}+\frac{1}{6}(\times 1) \\ & =\frac{1}{3} \text { oe } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	all correct cao	or $1-\frac{5}{6} \times \frac{4}{5}$ or $1-\frac{2}{3} \quad$ M2 ft incorrect tree dep probs ≤ 1 if $3^{\text {rd }}$ tree prob $=1$, (ii) M 1 M 1 A 0 if $3^{\text {rd }}$ tree $\operatorname{prob} \neq 1$, (ii)M1M0A0 NB!! $2 \times \frac{5}{6} \times \frac{1}{5}=\frac{1}{3}$ M1M0A0
	(iii)	$\frac{4}{5} \times \frac{3}{4}+\frac{1}{5}(\times 1)$ or $1-\frac{4}{5} \times \frac{1}{4}$ or $1-0.2$ all correct $=\frac{4}{5}$ or 0.8 oe	M1 A1 [2]	or $\left(\frac{5}{6} \times \frac{4}{5} \times \frac{3}{4}+\frac{5}{6} \times \frac{1}{5}\right) \div \frac{5}{6}$ all correct May be seen without working M1A1 cao	but $\frac{5}{6} \times\left(\frac{4}{5} \times \frac{3}{4}+\frac{1}{5}\right) \quad$ M0 ft incorrect tree: (iii) M 1 A 0

(Q4, June 2012)

(Q6, June 2012)

15	(i)	$\begin{aligned} & \frac{3}{4}+\frac{1}{4} \times \frac{3}{8} \\ & \quad+\frac{1}{4} \times \frac{5}{8} \times \frac{3}{16} \\ & =\frac{447}{512} \text { or } 0.873(3 \mathrm{sf}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{1}{4} \times \frac{5}{8} \times \frac{13}{16} \quad\left(=\frac{65}{512} \text { or } 0.127\right) \\ & 1-\frac{1}{4} \times \frac{5}{8} \times \frac{13}{16} \end{aligned}$	
	(ii)	$\begin{aligned} & 0.6 p \text { or equiv seen } \\ & 0.4+0.6 p=0.58 \\ & p=0.3 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	Tree diag alone insufficient for mark. Or $0.6 p=0.18$. " 0.18 " alone insufficient	NB $0.6 \times 0.3=0.18$ seen at the end is probably a check, not an answer. But if 0.3 seen and 0.18 is very clearly indicated as the ans then B1M1A0

