OCR Maths S1 Topic Questions from Papers Probability Answers

PhysicsAndMathsTutor.com

1	(i)	B(5, 3/8)	M1		B(5, 3/8) stated
					or $\frac{3}{8}$, $\frac{5}{8}$ seen and sum of powers = 5
		${}^{5}C_{2}(3/8)^{2}(5/8)^{3}$	M1	3	Correct expression
		= 5625/16384 or 0.343	A1		Answer, a.r.t. 0.343 ISW
	(ii)	$\frac{1}{2} p_1 = \frac{3}{8}$	M1		or $\frac{3}{8} / \frac{1}{2}$ or $\frac{3}{8} \times 2$
		$p_1 = \frac{3}{4} \mathbf{AG}$	A1	2	³ / ₄ correctly obtained. Must see explicit step.
					Verification eg $\frac{1}{2}$ x $\frac{3}{4} = \frac{3}{8}$ or $\frac{3}{8}/\frac{3}{4} = \frac{1}{2}$: M1A1
	(iii)	$\frac{1}{2} p_2 = \frac{1}{3}$	M1		or $\frac{1}{3} / \frac{1}{2}$ or $\frac{1}{3} \times 2$
		$p_2 = {}^2/_3$	A1	2	Answer 2/3 or a.r.t. 0.667

. .

2 (i)	$^{4}/_{7}$ or 0.571 (3 sfs)	B1		1	
(ii)	$\frac{5}{8} x^{4}_{7} + \frac{3}{8} x^{5}_{8}$	M1N	/11		M1: one correct prod or add any two prods M1: all correct
	$={}^{265}/_{448}$ or 0.592 (3 sfs)	A1		3	
(iii)	$3/_{8} x 5/_{8} + 5/_{8} x 3/_{7}$ physicsanc	math	/11 stutc	or.co	M1: one correct prod or add any two prods M1: all correct
	$=\frac{225}{448}$ or 0.502 (3 sfs)	A1		3	
Total			7		

(Q2, June 2006)

3 (i)	$^{2}/_{9}$ or $^{7}/_{9}$ oe seen	B1	
.,	$^{3}/_{9}$ or $^{6}/_{9}$ oe seen	B1	
	$^{1}/_{8}$ or $^{7}/_{8}$ oe seen	B1	
	Correct structure	B1	ie 8 correct branches only,
			ignore probs & values
	All correct	B1 5	including probs and values,
			but headings not req'd
ii	$\frac{3}{10} x \frac{7}{9} + \frac{7}{10} x \frac{3}{9} + \frac{7}{10} x \frac{6}{9}$	M2	or $\frac{3}{10}x^{7}/9 + \frac{7}{10}$ or $1 - \frac{3}{10}x^{2}/9$
			M1: one correct prod or any prod + $^{7}/_{10}$
	$^{14}/_{15}$ or 0.933 oe	A1 3	or $^{3}/_{10} \text{ x}^{2}/_{9}$
iii	$\frac{3}{10} \times \frac{2}{9} \times \frac{7}{8} + \frac{7}{10} \times \frac{6}{9}$	M2	M1: one correct prod
			^
	$^{21}/_{40}$ or 0.525 oe	A1 3	cao
	No ft from diag except: with replacement:	(i) structu	rre: B1 (ii) $^{91}/_{100}$: B2 (iii) 0.553: B2
Total		11	

(Q7, Jan 2007)

⁽Q6, Jan 2005)

4 (ia)	¹ / ₃ oe	B1 1	B↔W MR: max (a)B0(b)M1M1(c)B1M1
b	P(BB) + P(WB) attempted = ${}^{4}/_{10} \times {}^{3}/_{0} + {}^{6}/_{10} \times {}^{4}/_{0}$ or ${}^{2}/_{15} + {}^{4}/_{15}$	M1 M1	Or $\frac{4}{10} \times \frac{3}{9}$ OR $\frac{6}{10} \times \frac{4}{9}$ correct
	$=\frac{2}{5}$ oe	A1 3	NB $^{4}/_{10} \times ^{4}/_{10} + ^{6}/_{10} \times ^{4}/_{10} = ^{2}/_{5}$: M1M0A0
с	Denoms 9 & 8 seen or implied	B1	$Or^{2}/_{15}$ as numerator
	$^{3}/_{9} \times ^{2}/_{8} + ^{6}/_{9} \times ^{3}/_{8}$	M1	Or $\frac{\frac{2}{15}}{\frac{4}{10}}$ Or $\frac{\frac{4}{10}\mathbf{x}^{6}/_{9}\mathbf{x}^{3}/_{8} + \frac{4}{10}\mathbf{x}^{3}/_{9}\mathbf{x}^{2}/_{8}}{\text{above} + \frac{6}{10}\mathbf{x}^{5}/_{9}\mathbf{x}^{4}/_{8} + \frac{6}{10}\mathbf{x}^{3}/_{9}\mathbf{x}^{3}/_{8}}$
	$= \frac{1}{3}$ oe	A1 3	May not see wking
ii	P(Blue) not constant or discs not indep,		Prob changes as discs removed
	so no	B1 1	Limit to no. of discs. Fixed no. of discs
			Discs will run out
			Context essential: "disc" or "blue"
			NOT fixed no. of trials
<u> </u>			NOT because without repl Ignore extra
Total		8	

physicsandmathstutor.com

(Q4, June 2007)

5 (i)	$\sqrt{0.04} (= 0.2)$	M1	
	$(1 - \text{their} \sqrt{0.04})^2$	M1	
	= 0.64	A1 3	
ii	1-p seen M1 for either	B1	
	2p(1-p) = 0.42 or $p(1-p) = 0.21$ oe	M1	2pq = 0.42 or $pq = 0.21$ Allow $pq = 0.42$
	$2p^2 - 2p + 0.42(= 0)$ or $p^2 - p + 0.21(= 0)$	M1	or opp signs correct terms any order $(= 0)$
	2p = 2p + 0.12(-0) or $p = p + 0.21(-0)2 + /((-2)^2 - 4 \times 0.42) or 1 + /((-1)^2 - 4 \times 0.21)$	1011	or opp signs, correct terms any order (= 0)
	$\frac{2 \pm y((2) + 0.42)}{2 \times 2} \text{ or } \frac{1 \pm y((1) + 0.21)}{2 \times 1}$		oe Correct
	2×2 2×1 or $(n + 0.7)(n + 0.2) = 0$ or $(10n + 7)(10n + 2) = 0$	M1	Don P1M1M1 Any corr subst'n or fact'n
	(p-0.7)(p-0.5)=0 or $(10p-7)(10p-5)=0$		Dep BIWIWI Any con subst if of fact if
	p = 0.7 or 0.3	AI 3	$O_{\rm m}$ is 2 in 2 nd 1 in a map $D_{\rm 1}$ 1 M 1 M 0 M 0 A 0
			Omit 2 in 2 line: max BIMIMOMOAO
			One corr ans with no or inadeq wking: SCI
			eg $0.6 \times 0.7 = 0.42 \Rightarrow p = 0.7$ or 0.6
			$p^2 + 2pq + q^2 = 1$ B1
			$p^2 + q^2 = 0.58$ }
			$p = 0.21/q$ }
			$p^4 - 0.58p^2 + 0.0441 = 0$ M1
			corr subst'n or fact'n M1
			1 - p seen B1
			2p(1-p) = 0.42 or $p(1-p) = 0.21$ M1
			$p^2 - p = -0.21$
			$p^2 - p + 0.25 = -0.21 + 0.25$ oe } M1
			$OR(n-0.5)^2 - 0.25 = -0.21$ oe }
			$(n-0.5)^2 = 0.04$ M1
			(p - 0.5) = 0.04
			$p = 0.3 \text{ or } 0.7$ $\Delta 1$
Total		Q	p = 0.5 or 0.7 A1
Total		0	

(Q8, June 2007)

6 (i)	$0.4 \text{ x } p = 0.12 \text{ or } {}^{0.12}_{0.4} \text{ or } {}^{12}_{40} \text{ oe}$	M1	
	p = 0.3 oe	A1 2	
ii	0.4 x (1 – their 0.3) oe eg $\frac{40}{100} \times \frac{28}{40}$	M1	or 0.4 – 0.12 or 0.28 or 28 seen
			Not 0.4×0.88 unless ans to (i) is 0.12
	0.28 or 28% oe	A1ft 2	
Total		4	

(Q4, Jan 2008)

physicsandmathstutor.com

7 (i)	$(1/_6 + 3 \times (1/_6)^2)$	M2		or $3 \times (1/6)^2$ or $1/6 + (1/6)^2$ or $1/6 + 2(1/6)^2$	
				or $\frac{1}{6} + 4(\frac{1}{6})^2$	M1
	$= \frac{1}{4}$	A1	3		
(ii)	1/3	B1	1		
(iii)	3 routes clearly implied	M1			
	out of 18 possible (equiprobable) routes	M1		or $\frac{1}{3} \times \frac{1}{6} \times 3$	M2
				or $\frac{1}{3} \times \frac{1}{6}$ or $\frac{1}{6} \times \frac{1}{6} \times 3$ or $\frac{1}{3} \times \frac{1}{3} \times 3$ or $\frac{1}{4} \times 3$	$-1/_{6}$ M1
				but $\frac{1}{6} \times \frac{1}{6} \times 2$	M0
				$\frac{(\frac{1}{6})^2 \times 3}{\frac{1}{2}} \text{ or } \frac{\frac{1}{4} - \frac{1}{6}}{\frac{1}{2}} \text{ or } \frac{\frac{1}{2} \times \frac{1}{6}}{\frac{1}{2}} \text{ oe}$	M2
				or $\frac{P(4\&twice)}{P(twice)}$ stated or $\frac{\text{prob}}{\frac{1}{2}}$	M1
				Whatever 1 st , only one possibility on 2 nd	M2
				$^{1}/_{6}$, no wking M1N	//1A1
	1/2			$1/_{12}$, no wking	M0
	· 0	A1	3		
Total		7			

(Q8, Jan 2009)

8 (ia)	$^{18}/_{19}$ or $^{1}/_{19}$ seen $^{17}/_{18}$ or $^{11}/_{18}$ seen structure correct ie 6 branches all correct incl. probs and W & R	B1 B1 B1 B1 4	regardless of probs & labels (or 14 branches with correct 0s & 1s)	
b	$\frac{1}{1/_{20} + \frac{19}{_{20} \times 1/_{19} + \frac{19}{_{20} \times 18/_{19} \times 1/_{18}}} = \frac{3}{_{20}}$	M2 A1 3	M1 any 2 correct terms added	$\frac{{}^{19}\!/_{20} \times {}^{18}\!/_{19} \times {}^{17}\!/_{18}}{1 - {}^{19}\!/_{20} \times {}^{18}\!/_{19} \times {}^{17}\!/_{18}}$
iia	$ \frac{19}{20} \times \frac{18}{19} = \frac{9}{10} \text{ oe} $	M1 A1 2	¹⁹ / ₂₀ × ¹⁸ / ₁₉ × ¹ / ₁₈ + ¹⁹ / ₂₀ × ¹⁸ / ₁	$1_{19} \times 17/_{18} \text{ or } 1/_{20} + 17/_{20}$
b	$(P(X = 1) = \frac{1}{20})$ $(P(X = 1) = \frac{1}{20})$ $= \frac{1}{20}$ $\sum_{n=2}^{2} \sum_{n=2}^{2} \sum_{$	M1 A1 M1	or $1 - (\frac{1}{20} + \frac{9}{10})$ or 2 probs of $\frac{1}{20}$ M1A1 ≥ 2 terms, ft their p's if $\Sigma p = 1$	
	- /20 01 2.85	AI 4	NB: ${}^{19}\!/_{20} \times 3 = 2.85$ no m	ks
ia			Original scheme	
ib			$\frac{1}{1/20} + \frac{19}{20} \times \frac{1}{20} + \frac{19}{20} \times \frac{1}{20} + \frac{19}{20}$ or $1 - \frac{19}{20}^2$	$b^{2} \times {}^{1}/{}_{20}$ M1
iia			$({}^{19}/_{20})^2$ or $({}^{19}/_{20})^2 \times {}^{1}/_{20} + ({}^{19}/_{20})^2 \times {}^{1}/_{20}$	$({}^{19}/_{20})^2 \times {}^{19}/_{20} \text{ M1}$
b			Original scheme But NB ans 2.85(25)	M1A0M1A0
Total		13		

(Q8, June 2009)

9 (i)	²⁵ / ₃₇	B2 2	B1 num, B1 denom 25/37xp B1
(ii)	$\frac{15}{23}$ seen or implied	M1	
	$\times \frac{39}{59}$ seen or implied	M2	M1 num, M1 denom
	$=\frac{585}{1357}$ or 0.431 (3 sfs) oe	A1 4	Allow M1 for 39/59x or + wrong p
Total		[6]	[

(Q7, Jan 2010)

PhysicsAndMathsTutor.com

10 (i)	$\begin{array}{c} 0.4 \times 0.7 \\ 0.6 + 0.4 \times 0.7 \end{array}$	M1 M1	or $0.6 + \text{prod of } 2 \text{ probs}$ Cond the set of the	$\begin{array}{l} 1 - \text{prod of } 2 \text{ P's} & \text{or } 0.4 \times 0.3 \\ 1 - 0.4 \times 0.3 \end{array}$			
ii	= 0.88 $p + (1-p) \times p = 0.51$ or $2p - p^2 = 0.51$	M1 M1	or $p^2 + p \times (1 - p) + (1 - p) \times p$	Condone $p + p \times 1 - p$ M1, but $p + qp = 0.51$ M0			
	$p^{-}-2p+0.51=0$ (p-0.3)(p-1.7) = 0 or $p = \frac{2\pm\sqrt{4-4\times0.51}}{2}$ oe	AI M1	Correct $QE = 0$ Condone omission of "= 0" Correct method for their 3-term QE	or $(1 - p)^2 = 0.49$ M1A1 $1 - p = \pm 0.7$ M1 must have \pm			
	<i>p</i> = 0.3	A1 4	Not <i>p</i> = 0.3 or 1.7	Correct ans from correct but reduced wking or T & I or verification or no wking: 4 mks Ans $p = 0.3$ or 1.7 from correct but reduced wking or T & I or no wking: M1M1M1A0 Ans $p = 0.3$ following correct wking except other solution incorrect: BOD 4 mks (eg $p = \frac{2\pm\sqrt{4-4\times0.51}}{2}$ so $p = 0.3$ or -1.3 so $p = 0.3$: 4 mks)) p = 0.3 from wrong wking but correct verification: BOD 4 mks p = 0.3 from wrong wking alone: M0A0M0A0			
Total		7					
	physicsandmathstutor.com						

⁽Q4, Jan 2011)

11 (i)	1 (i) If done with replacement, no marks in any part of this question.						
	All correct probs correctly placed,		B1 for 4 correct probs anywhere	Allow B2 with missing labels but only if probs			
	matching labels, if any	B2 2		consistently placed, ie R above B throughout			

(Q5, June 2011)

12 (i)	Incorrect p (eg "cubical die means 18 sides hence $p = \frac{1}{18}$ "): can gain all B & M marks.								
	$\frac{25}{216}$ oe or 0.116 (3 sfs)	B1 1							
ii	$({}^{5}/_{6})^{7} \times {}^{1}/_{6}$ alone	M2	M1 for $({}^{5}/_{6})^{8} \times {}^{1}/_{6}$ alone						
	$= 0.0465 (3 \text{ sfs}) \text{ or } \frac{78125}{1679616}$	A1 3							
iii	$(5/6)^8$ oe alone	M1	$1 - P(X \le 8)$, with exactly 8 correct terms	NOT $1 - (\frac{5}{\epsilon})^8$, NOT $(\frac{5}{\epsilon})^8 \times \dots$					
	$= 0.233$ (3 sfs) or $\frac{390625}{1679616}$	A1 2		. 6 6 .					
iv	NB If more than 5 products are added (eg P($\leq X \leq 12$): no marks						
	$ ({}^{5}{}_{/6})^{9} \times {}^{1}{}_{/6} + ({}^{5}{}_{/6})^{10} \times {}^{1}{}_{/6} + ({}^{5}{}_{/6})^{11} \times {}^{1}{}_{/6} + ({}^{5}{}_{/6})^{12} \times {}^{1}{}_{/6} $ $ (= 0.0323 + 0.0268 + 0.0224 + 0.0187) $	M3	M3 for all correct	$({}^{5}/_{6})^{9} - ({}^{5}/_{6})^{13}$ or $1 - ({}^{5}/_{6})^{13} - [1 - ({}^{5}/_{6})^{9}]$ M3					
			or M2 for 3 of these added or these 4 plus 1 extra or 0.0817 or 0.0680 or 0.139 or 0.116	or $({}^{5}/_{6})^{8,9 \text{ or } 10} - ({}^{5}/_{6})^{12, 13 \text{ or } 14}$ or $1 - ({}^{5}/_{6})^{12, 13 \text{ or } 14} - [(1 - ({}^{5}/_{6})^{8, 9 \text{ or } 10}]$ M2					
			or M1 for ≥ 1 of these terms or values seen;	or $\pm [(5/6)^9 - (1 - (5/6)^{13})]$ or $\pm [1 - (5/6)^9 - (5/6)^{13}]$ M1					
	= 0.100 (3 sfs)	A1 4	Allow 0.1 with wking						
Total		10							

(Q8, June 2011)

13	(i)	Top: 2 branches $\frac{4}{5}$, $\frac{1}{5}$ & R, B shown	B1	consistent	
		Bottom: 1^{st} branch: prob = 1 or $\frac{5}{5}$, & R shown no 2^{nd} branch OR branch with prob = 0 or $\frac{0}{5}$	B1 [2]	allow eg $\frac{4}{4}$ ignore any 3 rd layer branches	Any missing label(s) on first three branches, subtr B1 once No label needed on zero branch, if drawn.
	(ii)	$\frac{5}{6} \times \frac{1}{5} \text{ or } \frac{1}{6} (\times 1) \text{ or } \frac{1}{6} \text{ seen}$ $\frac{5}{6} \times \frac{1}{5} + \frac{1}{6} (\times 1)$ $= \frac{1}{3} \text{ oe}$	M1 M1 A1 [3]	all correct cao	or $1 - \frac{5}{6} \times \frac{4}{5}$ or $1 - \frac{2}{3}$ M2 ft incorrect tree dep probs ≤ 1 if 3^{rd} tree prob = 1, (ii)M1M1A0 if 3^{rd} tree prob $\neq 1$, (ii)M1M0A0
					NB!! $2 \times \frac{5}{6} \times \frac{1}{5} = \frac{1}{3}$ M1M0A0
	(iii)	$\frac{4}{5} \times \frac{3}{4} + \frac{1}{5} (\times 1)$ or $1 - \frac{4}{5} \times \frac{1}{4}$ or $1 - 0.2$ all correct	M1	or $(\frac{5}{6} \times \frac{4}{5} \times \frac{3}{4} + \frac{5}{6} \times \frac{1}{5}) \div \frac{5}{6}$ all correct	but $\frac{5}{6} \times (\frac{4}{5} \times \frac{3}{4} + \frac{1}{5})$ M0
		$=\frac{4}{5}$ or 0.8 oe	A1 [2]	May be seen without working M1A1 cao	ft incorrect tree: (iii) M1A0

⁽Q4, June 2012)

physicsandmathstutor.com

14	$(1-0.1) \div 5$ (= 0.18) phys	sicsawid m	atbatuteringonied, eg by 18	
	3×0.18 or 2×0.18 or 7×0.1 (or result of these)(poss \times 100) (3 \times 0.18 only scores if using £3, not score of 3. Similarly for 2×0.18).	M1	5×0.18 or 10×0.1 (or result of these) (poss $\times 100$)	or, using exp no. of 5's & 6's 18 × 5 or 10 × 10
	$4 \times 3 \times 0.18$ AND $2 \times 0.18 + 7 \times 0.1$ (poss × 100) (or 2.16 AND 1.06 or 216 AND 106)	M1	3 AND 5 × 0.18+10 × 0.1 (poss × 100) (or 3 AND 1.9 or 300 AND 190)	300 AND 18 × 5 + 10 ×10 (NB 300+ 100×0.18 +100×0.1 is insuff)
	'2.16' – '1.06' or '216' – '106' <u>must</u> be attempt gain on 1,2,3,4 – loss on 5,6	M1 dep any M1	3 - '1.9' or 300 - '190' <u>must</u> be attempt receipt – payout on 5,6	Eg: 300–100×(5×0.18+ <u>6</u> ×0.1)=150 M1M1M0M1A0
	$E(\text{profit for 100 rolls}) = (\pounds)110$	A1	$E(\text{profit for 100 rolls}) = (\pounds)110$	Mark one method only Must be matched pair
		[5]	NB 300-(0.1×300+0.18×300) = 300-84 =216 M1M1M0M0A0	eg 300–106 or 216–190: M1M1M0M0A0

⁽Q6, June 2012)

15	(i)	$\frac{3}{4} + \frac{1}{4} \times \frac{3}{8}$	M1	$\frac{1}{4} \times \frac{5}{8} \times \frac{13}{16}$ (= $\frac{65}{512}$ or 0.127)	
		$+\frac{1}{4} \times \frac{5}{8} \times \frac{3}{16}$	M1	$1 - \frac{1}{4} \times \frac{5}{8} \times \frac{13}{16}$	
		$=\frac{447}{512}$ or 0.873 (3 sf)	A1		
			[3]		
	(ii)	0.6p or equiv seen	B1	Tree diag alone insufficient for mark.	NB $0.6 \times 0.3 = 0.18$ seen at the end is
		0.4 + 0.6p = 0.58	M1	$Or \ 0.6p = 0.18$. "0.18" alone insufficient	probably a check, not an answer.
		p = 0.3	A1	-	But if 0.3 seen and 0.18 is very clearly
		-	[3]		indicated as the ans then B1M1A0

(Q2, Jan 2013)